

Credits:
 Cover image rendered using the Galileo Renderer (http://sourceforge.net/projects/galileorenderer), courtesy of Solomon Boulos
 Cover design by Nathan Galli

Poster Compendium

The 2006 IEEE Symposium on
Interactive Ray Tracing

University of Utah
Salt Lake City, Utah

18-20 September 2006

ii

Table of Contents

 I. Novel Architectures and Graphics Processing Units

 1. Ray Tracing on a Cell Processor with Software Caching
 Jeremy Sugerman, Tim Foley, Shigeatsu Yoshioka, and Pat Hanrahan

 2. Ray Tracing on Asynchronous Supercomputing Stream Processors
 Gennette Gill and Montek Singh

 3. GPU-based rasterization-raytracing hybrid
 Daniel Reiter Horn, Mike Houston, Tim Foley, and Pat Hanrahan

 4. Offloading ray processing onto the GPU using cooperative worker threads
 Stephan Reiter

 5. Interactive Ray Tracing on Modern Graphics Hardware
 Andrew Adinetz

 II. Intersection and Acceleration Methods

 6. Packet-Primitive Intersection Method
 Kazuhiko Komatsu, Yoshiyuki Kaeriyama, Daichi Zaitsu, Kenichi Suzuki,
 Nobuyuki Ohba, and Tadao Nakamura

 7. Tessellating Planar Quadrilaterals into Triangles to Meet a Maximum-Edge-Length
 Threshold while Minimizing Grid Size
 Peter Djeu, Gordon Stoll, and William R. Mark

 8. Interactive Iso-Surface Ray Tracing of Massive Volumetric Datasets
 Heiko Friedrich, Ingo Wald, Johannes Günther, Gerd Marmitt,
 and Philipp Slusallek

 9. Fast ray tracing with Intel IPP
 Alexei Leonenko and Sergey Perepelkin

 10. Realtime Ray Tracing of Animated Meshes using Fuzzy KD-Trees
 Heiko Friedrich, Johannes Günther, Ingo Wald, Hans-Peter Seidel,
 and Philipp Slusallek

iii

 III. Sampling

 11. Towards Triple Product Sampling in Direct Lighting
 David Cline, Parris K. Egbert, and Kenric B. White

 12. Evaluating Multidimensional Samples Using 2-D Projections
 Dave Edwards, Solomon Boulos, Peter Shirley, and Ingo Wald

13. Improved Adaptive Frameless Rendering Using Edge Respecting Filters
 Ewen Cheslack-Postava, Abhinav Dayal, Abe Stephens, David Luebke,
 and Ben Watson

 IV. Scientific and Engineering Applications

 14. BRL-CAD: Ray Tracing for Scientific and Engineering Applications
 Lee A. Butler

 15. Expressing Blast Sensitivity Envelopes with Implicit Surfaces
 Erik Greenwald

16. A Coherent Grid Traversal Approach to Visualizing Particle-Based Simulation Data
 Christiaan P. Gribble, Thiago Ize, Andrew Kensler, Ingo Wald,
 and Steven G. Parker

Ray Tracing on a Cell Processor with Software Caching

Jeremy Sugerman∗

Stanford University

Tim Foley†

Stanford University

Shigeatsu Yoshioka‡

Sony Corporation

Pat Hanrahan§

Stanford University

Figure 1: Scenes rendered using a Cell processor for ray-scene intersection tests. From left to right: the Stanford bunny and BART robots (with
shadows), and the BART kitchen (with specular reflection).

Over the past few years, advances in both software techniques
and hardware performance have spurred increased research into ray
tracing images in interactive time. The combination of ray packets
and microarchitectural tuning has established k-D tree based tracing
as the de facto standard [7, 6] with some specialialized techniques
going even further [5]. At the same time, a number of alternative
architectures with compellingly high computational capacities have
been evaluated for ray tracing ranging from GPUs [4] through cus-
tom hardware [8]. In this work, we investigate the performance of
the Cell Broadband Engine [2, 1, 3]. We treat Cell as essentially an
eight core symmetric multiprocessor with an extra core for coordi-
nation and initialization. We find this treatment appealing because
it offers a simple model that still exploits the rich ray-level paral-
lelism of ray tracing and, with a good implementation, still scales
well across all cores. Our investigation focuses on the core task of
ray-scene intersection and considers primary, shadow, and reflec-
tion rays.
The major challenge of the Cell architecture is its unusual mem-

ory system. Unlike conventional processors, the Cell’s eight SPUs
lack both hardware caches and even the ability to directly address
system memory. Instead, programs must explicitly DMA any code
and data they need into per-SPU local memory before accessing
it. Our initial naive implementation issued a DMA and stalled on
every access to k-D tree or scene data. It was a trivial port of our ex-
isting conventional implementation, but performance suffered from
the frequent DMAs.
We then augmented our naive implementation to use straightfor-

ward software managed caches for k-D tree and triangle data. Sur-
prisingly, this dramatically reduced the DMA performance penalty
and kept the cost of tag checks plus cache hit to about 15 instruc-
tions per 32-ray packet. Even with the limited size of SPU local
store, single-SPU execution improved more than a factor of 2.5
with high scalability up to 8 or 16 SPUs. We examined the com-

∗e-mail:yoel@cs.stanford.edu
†e-mail:tfoley@cs.stanford.edu
‡e-mail:syoshiok@stanford.edu
§e-mail:hanrahan@cs.stanford.edu

1 32 64 128
Node Cache Size (KB)

10

20

12
14
16
18
20

Pe
rf

or
m

an
ce

(M
R

ay
s/s

)
Bunny
Robots
Kitchen

Figure 2: Performance as a function of node cache size when ren-
dering on 8 SPUs.

plexity of our scenes and the impact of varying cache parameters
to understand when software managed caching is most feasible and
discovered that our most complex example, with almost 15MB of
k-D tree nodes, performs well with a node cache that is only 32KB.

REFERENCES

[1] Brian Flachs et al. A streaming processing unit for a CELL processor.
In Proceedings of the IEEE International Solid-State Circuits Confer-
ence, 2005.

[2] Dac Pham et al. The design and implementation of a first-generation
CELL processor. In Proceedings of the IEEE International Solid-State
Circuits Conference, 2005.

[3] Michael Gschwind, Peter Hofstee, Brian Flachs, Martin Hopkins,
Yukio Watanabe, and Takeshi Yamazaki. A novel SIMD architecture
for the CELL heterogeneous chip-multiprocessor. In Hot Chips 17,
2005.

[4] Tim Purcell. Ray Tracing on a Stream Processor. Ph.D. thesis, Stanford
Unviersity, March 2004.

[5] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray
tracing algorithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[6] Gordon Stoll. Optimization techniques. In Introduction to Real-Time
Ray Tracing - SIGGRAPH 2005 Course 38. 2005.

[7] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[8] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: a pro-
grammable ray processing unit for realtime ray tracing. ACM Trans.
Graph., 24(3):434–444, 2005.

1

Ray Tracing on Asynchronous Supercomputing Stream Processors
Gennette Gill and Montek Singh

Dept. of Computer Science
Univ. of North Carolina, Chapel Hill, NC 27599, USA

{gillg,montek}@cs.unc.edu

1 INTRODUCTION
Changes in modern semiconductor technology are making computa-
tion so inexpensive that individual chips will soon contain thousands
of processing units (PUs). Asynchronous design techniques can
make multiprocessor chips more efficient by allowing idle proces-
sors to consume no energy. Under the asynchronous supercomputing
model, transistors—and therefore computing power and memories–
are essentially free and idle processors are no longer wasteful.
This work re-explores the domain of ray tracing hardware under

this new asynchronous supercomputing model. Since bandwidth is
the limiting factor, an effective way to improve speed is to sched-
ule processing tasks, or kernels, across PUs in a way that minimizes
bandwidth. Two competing theories in the area of kernel schedul-
ing are time-multiplexing and space-multiplexing. In this work, we
present the performance tradeoffs of each of these theories. We then
analyze current ray tracing hardware systems and show that they
schedule kernels in a way equivalent to time-multiplexing. As an al-
ternative, we offer a sketch of a space-multiplexed ray tracing system
and discuss its benefits over time-multiplexed systems.
2 TIME-MULTIPLEXING VS. SPACE-MULTIPLEXING
The speed of a stream processor is limited by several types of time
overheads. Kernel-switching overhead is the time needed to change
which kernel is assigned to a PU. Data-transmission overhead is the
time spent sending data from one PU to another. Stalling occurs when
a PU waits for data to become available.
Time Multiplexing A time-multiplexed system assigns different

kernels to the same processing unit over time. For example, the Imag-
ine system from Stanford [1] uses time-multiplexed kernel schedul-
ing. Data produced by a PU is retained for use by the next kernel
on the same PU, thereby eliminating both data-transmission over-
head and stalling. However, task-switching overhead is incurred of-
ten. Therefore, time-multiplexing is most beneficial when the aver-
age task-switching overhead is low.
Space Multiplexing A space-multiplexed system assigns each

kernel to a different PU [2]. Because each PU maintains the same
kernel throughout operation, no task switching overhead is incurred.
However, the data transmission overhead can be high, depending on
the spatial arrangement of the kernels and the amount of data trans-
mitted. Stalling can occur when a fast kernel must wait for data from
a slower kernel. In addition, some of the PUs may receive a much
higher workload than the others, which can further degrade perfor-
mance. Space-multiplexing should be used only when the average
task-switching overhead is high compared to these other overheads.
3 APPLICATION TO PREVIOUS WORK
One important kernel in ray tracing is the intersection kernel. In
special-purpose ray tracing hardware, such as the SaarCOR family
of RPUs [3], one kernel handles intersections with all of geometry
in one leaf node of the BSP tree. Essentially, a different intersec-
tion kernel must exist to handle geometry for each leaf node. When
viewed in this way, SaarCOR is a time-multiplexed system. A PU
changes to a different intersection kernel each time ray (or packet
of rays) arrives. Other GPU based solutions [4] also switch inter-
section kernels over time. Kernel-switching overhead in these time-
multiplexed systems is very high because a large amount of geometry
must be sent to the PU during each switch. As described in Section

intersection
geometry
memory

traversal
BSP tree
memory

intersection
geometry
memory

intersection
geometry
memory

intersection
geometry
memory

intersection
geometry
memory

intersection
geometry
memory

intersection
geometry
memory

intersection
geometry
memory

traversal
BSP tree
memory

intersection
geometry
memory

intersection
geometry
memory

Figure 1: A kernel to PU mapping for a space-multiplexed ray tracer

2, a space-multiplexed system may be more efficient when kernel-
switching overheads are high.
4 PROPOSED RAY TRACING SYSTEM
System Description Our proposed space-multiplexed ray tracer
maps each intersection kernel to one PU. Each PU has a local mem-
ory which stores the entire set of geometry for that leaf node. Tra-
versal kernels perform BSP tree traversals for arriving rays. Each PU
that implements a traversal kernel has a local memory that stores the
BSP tree information for the scene.
Figure 1 shows one way of mapping these kernels to PUs. Each

box represents a PU, and each arrow represents the transmission of a
ray between PUs. Traversal kernels act as routers: they send ray data
to the appropriate intersection kernel or to another traversal kernel.
For best performance, leaf nodes that are adjacent in the 3D scene
should be mapped to PUs that are close to each other.
System Analysis Our approach reduces kernel-switching over-

head by eliminating switching altogether. It minimizes the data-
transmission overhead by sending only small amounts of data (rays)
over short distances. Whereas time-multiplexing approaches have
high bandwidth requirements between the memory and the PUs, our
space-multiplexed approach only loads the geometry data to each PU
once for each scene, greatly reducing required memory bandwidth.
Like all space-multiplexed systems, the proposed ray tracing sys-

tem may have load imbalances. However, increased processing
power prevents load imbalances from degrading performance as
much as they did in the past. For example, consider the unfortu-
nate case in which one PU handles all of the eye ray intersections. If
the scene has 1 mega-triangles and there are 1024 PUs available for
intersection in the system, each PU holds only 1 kilo-triangles. With
this relatively small number of triangles, it is reasonable to expect
one PU to produce acceptable frame rates (i.e 10-20 fps) for scene
resolutions up to 1 mega pixel. The unused PUs will remain idle and
waste no energy. In more typical situations, the ray intersection load
will be more balanced, resulting in higher frame rates.
REFERENCES
[1] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and A. Das, “Stream

processors: Progammability and efficiency,” Queue, vol. 2, no. 1, pp. 52–
62, 2004.

[2] M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein, “Spatial computation.” [Online]. Available: cite-
seer.ist.psu.edu/budiu04spatial.html

[3] J. S. Sven Woop and P. Slusallek, “Rpu: A programmable ray processing
unit for realtime ray tracing,” in Proceedings of ACM SIGGRAPH 2005,
July 2005. [Online]. Available: http://www.saarcor.de/

[4] T. J. Purcell, “Ray tracing on a stream processor.” [Online]. Available:
citeseer.ist.psu.edu/purcell04ray.html

2

GPU-based rasterization-raytracing hybrid

Daniel Reiter Horn∗

Stanford University

Mike Houston
Stanford University

Tim Foley
Stanford University

Pat Hanrahan
Stanford University

Figure 1: An ATI X1900XT generated the 512x512 images at 3.8, 7.0, 4.9, and 9.0 fps respectively, utilizing 2, 1, 2 and 1 bounces respectively.

With the advent of highly parallel programmable graphics pro-
cessing units (GPUs) with a large number of floating point units
and a custommemory system with a high peak bandwidth, many re-
searchers have investigated the possibility of applying this abundant
computation power to data-parallel problems like raytracing. Pur-
cell et al.[4] wrote the first raytracer on a GPU to utilize an accel-
eration structure, in this case a uniform grid. Foley et al.[2] applied
a kd-tree acceleration structure to GPU-raytracing, and he showed
that on graphics hardware, there are scenes for which a kdtree yields
far better performance. Given the lack of addressable temporary
storage within a fragment shader, the fastest programmable unit on
the GPU, Foley et al. had to invent two stackless kdtree traver-
sal methods: kdtree-restart and kdtree-backtrack. Likewise Thrane
and Simonsen[5] invented a fixed-order bounding-volume traversal
method for ray intersection on the GPU to obviate the needs for a
stack, and Carr et al.[1] used a similar BVH structure to create a
raytracer suited to dynamic geometry.
We have created a raytracing-based graphics pipeline on GPUs

using the Kdtree-Restart method presented by Foley et al. Our im-
plementation is an order of magnitude faster than previous imple-
mentations of KDtree traversal on the GPU due to our use of 4-
wide ray packets [6], looping instructions [3] and hardware-level
commands on the ATI graphics hardware. Thus we get the advan-
tage of tracing ray packets, while avoiding the cost of invoking the
kdtree-traversal function many times as well as of OpenGL, and
DirectX abstractions. Additionally we have a toggle to make use
of the rasterization hardware on the board to perform primary ray
intersection and produce first hits on the scene before raytracing all
subsequent bounces.
Our system performs the entire rendering pipeline on the GPU

itself. The CPU merely orchastrates memory movement, passes in
scene and camera data, and invokes fragment shaders on that data.
Since the GPU is highly suited to computing first-hit and shading
steps of the raytracing pipeline, the entire system runs at interactive
rates on a variety of scenes as shown in Table 1.
Rasterization hardware is efficient at drawing and clipping ge-

ometry, but it is difficult or impossible to use for reflections, re-

∗e-mail:danielrh@graphics.stanford.edu

Scene Raster Eye 1st 2nd Shadow
-ization Rays Bounce Bounce Rays
pixels/s rays/s rays/s rays/s rays/s
(millions) (millions) (millions) (millions) (millions)

Cornell Box 617.9 41.1 48.3 39.4 41.8
Platonic Solids 500.6 22.4 13.4 11.7 14.7
Stanford Bunny 156.1 5.9 4.6 3.4 2.7
Robots 119.4 6.5 4.0 3.6 4.6
Kitchen 95.9 6.7 6.5 4.3 8.3

Table 1: We ran our raytracer on a selection of standard scenes
at a resolution of 1024x1024 utilizing an ATI x1900XT. We do not
include shading time in the table, but for the bunny, robots and
kitchen, shading takes less than 17% of the total time.

fraction, and complex lighting. Raytracing provides a much better
solution to complex optical effects, but it is currently not nearly as
fast as the best rasterization hardware for primary rays. By combin-
ing rasterization and raytracing within a single application, we can
leverage the benefits of rasterization and raytracing together.

REFERENCES

[1] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast
gpu ray tracing of dynamic meshes using geometry images. In Pro-
ceedings of Graphics Interface 2006, Toronto, Ontario, Canada, 2006.
Canadian Information Processing Society.

[2] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures
for a gpu raytracer. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
15–22, New York, NY, USA, 2005. ACM Press.

[3] Microsoft. Pixel shader model 3, 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
directx9 c/Shader Model 3.asp.

[4] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Trans. Graph.,
pages 703–712, 2002.

[5] Niels Thrane and Lars Ole Simonsen. A comparison of acceleration
structures for GPU assisted ray tracing. M.S. thesis, University of
Aarhus, Aarhus, Denmark, August 2005.

[6] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive rendering with coherent ray tracing. Computer Graphics
Forum, 20(3):153–164, 2001.

3

Offloading ray processing onto the GPU using cooperative worker threads

Stephan Reiter∗

Johannes Kepler University of Linz

ABSTRACT

The processing power and flexibility of recent rasterization hard-
ware permits to speed up image generation through raytracing. This
paper introduces a method that performs ray processing on the GPU
in parallel to shading operations on the CPU. It effectively exploits
CPU-GPU parallelism in a way that can be integrated into existing
implementations utilizing the standard recursive formulation of the
problem.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: Cooperative threading, GPGPU, hardware accelera-
tion, ray batching, ray tracing

The latest releases of graphics hardware offer new concepts, such
as branching, looping and higher instruction count limits for shader
programs, into the rasterization world that are crucial for using the
GPU as a general purpose processor [3]. Yet, using the GPU as
a coprocessor usually requires substantial modifications to tradi-
tional, CPU-only code.

Many standard implementations of raytracers employ the con-
cept of materials for the shading of objects: The color of a given
ray is computed by invoking the material program of the respective
object, which has been hit by the ray. In addition, secondary rays
can be traced for advanced effects such as shadows, reflections, or
refractions [2]. This direct implementation of the recursive formu-
lation of the raytracing algorithm is incompatible with GPU-based
acceleration techniques, because only a single ray is processed at a
given time and the involved trace-function is expected to return im-
mediately. In order to use hardware accelerated raytracing, where
batches of rays are processed on the GPU [1], a way has to be found
to separate shading operations from ray processing.

To solve this problem, we propose the following software archi-
tecture: Each of the primary rays is processed in parallel by a set
of cooperative threads. Upon calling a trace-function, the ray is in-
serted into the processing queue and the current thread is put on
hold by passing control to the next "worker" in the set of threads.
When the size of the ray queue exceeds a given threshold, a batch
is issued to the GPU, which begins processing the contained rays
asynchronously to the CPU and delivers the results in a texture.
Once all cooperative threads are in waiting mode, the available re-
sults are retrieved from the GPU and the affected threads are woken
up, where control flow resumes after the call to the trace-function.
This way trace-calls still behave like in the traditional implemen-
tation, but multiple rays can be processed in parallel on the GPU.
Therefore no changes to material programs are necessary, although
additional speedup may be gained by passing an array of rays to the
trace-function at once, e.g. for smooth shadows.

The poster will present an overview of the approach together
with results in the form of pictures and benchmarks of a proof-of-

∗e-mail: stephan.reiter@students.jku.at

concept implementation. It will also deliver images to explain and
illustrate the control flow in detail for a sample scene.

REFERENCES

[1] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In
HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 37–46, Aire-la-Ville, Switzer-
land, Switzerland, 2002. Eurographics Association.

[2] Andrew S. Glassner, editor. An introduction to ray tracing. Academic
Press Ltd., London, UK, UK, 1989.

[3] Aaron Lefohn, Ian Buck, John D. Owens, and Robert Strzodka. Gpgpu:
General-purpose computation on graphics processors. In Tutorial #3 at
IEEE Visualization, October 2004.

4

Interactive Ray Tracing on Modern Graphics Hardware

Andrew Adinetz

Moscow State University

Interactive ray tracing has been a topic of ongoing research for
some time. With the growth of the computational power avail-
able on commodity PCs interactive ray tracing has become possible
not only on expensive supercomputers, but also on commodity ma-
chines.

Most of the effort in interactive ray tracing research, however,
has been concentrated on doing ray tracing on contemporary SIMD
CPU architectures. With the emergence of GPGPU, however,
graphics processors have also become target platforms for inter-
active ray tracing. As GPUs are highly parallel and have been in-
herently designed for accelerating graphics computations, they are
likely to be a good choice platform for interactive ray tracing. And
as GPU computational powers are considerably higher than that of
typical CPUs, the former become even more attractive platform.

In practice, however, GPU ray tracing turned out not as simple.
First GPUs did not support a wide range of control flow instruc-
tions (e.g., loops and branches) crucial for implementing ray trac-
ing. These instructions, therefore, had to be modeled, and the entire
ray tracing algorithm to be implemented in a streaming program-
ming paradigm. This involved breaking ray tracing in a number
of kernels (traversal, intersection etc.) and implementing each in a
separate shader and storing intermediate data in textures.

While this implementation allowed performing ray tracing, it in-
troduced a number of bottlenecks, the most significant being the
need to read and write the data to and from the textures each pass.
As the number of passes typically amounted to thousands, this need
created huge video memory bandwidth, which slowed the computa-
tions considerably even on modern graphics boards with fast video
memory bus.

With the emergence of PS 3.0 graphics hardware, looping and
branching instructions needed to perform ray tracing in a single
pass have become available. Our approach, therefore, takes advan-
tage of such instructions and performs grid-based ray tracing in a
single pass in a single shader instead of involving multiple passes.
The algorithm used and the ray tracing code, in fact, resemble much
a code written for a CPU ray tracer, with the exception of using vec-
tor instructions available on GPUs instead of scalar ones.

Single-pass ray tracing allowed for elimination of memory bot-
tleneck, as the test results have shown, rather moving the bottleneck
to the computations. This one is much more tolerable, as the num-
ber of graphics pipelines and the computational power of GPUs
increase faster than memory bandwidth. On a set of test scenes
ranging from 10 to 50 thousand triangles, at 512x512 resolution, 7
FPS has been achieved, with the number of rays per second of about
3-4 million on ATI X1800 GPU.

We’re currently working on incorporating BSP subdivision and
coherent ray tracing in our framework.

5

Packet-Primitive Intersection Method

Kazuhiko Komatsu ∗ Yoshiyuki Kaeriyama ∗ Daichi Zaitsu ∗ Kenichi Suzuki ∗ Nobuyuki Ohba †

Tadao Nakamura ∗

Graduate School of Information Sciences, Tohoku University ∗

IBM Research, Tokyo Research Laboratory IBM Japan, Ltd. †

Basic ray tracing algorithms were founded in 1980s, and since
then many implementation methods have been proposed so far. To
accelerate the ray tracing operations, three major approaches have
recently been used. The first one is to use a comprehensive data
structure. This drastically reduces the number of ray-primitive in-
tersection tests, which dominates the speed of ray tracing. Above
many proposed data structures, the kd-tree is most widely used now
[2] [3]. The second one is to group two or more rays together into
ray packets to make use of the coherency of the adjacent rays. This
also raises the efficiency of the SIMD engines in the recent CPUs
and GPUs [3]. The third one is to use the frustum traversal [2].
The rays with spatial coherency in a ray group traverse a kd-tree at
once. The combination of these three methods dramatically boosts
the speed of the ray tracing processing.

In this paper, we propose an intersection method using ray pack-
ets. This method reduces the number of ray-primitive intersection
computations by using the ray planes in a packet.

After a ray traversed the kd-tree and reached a leaf, an intersec-
tion test is performed to see if the ray actually intersects the prim-
itives in the leaf. When every ray in the ray packet has found its
nearest primitive, the test proceeds with the next ray packet. If at
least one ray cannot find the nearest primitive, the ray packet con-
tinues to traverse the kd-tree and iterates intersection tests. In con-
ventional methods, the intersection tests are sequentially performed
for each ray in the ray packet. To shorten the time for each intersec-
tion test, the kd-tree is inclined to be deep, and thus each leaf has
only a few primitives. A deep tree makes the traversing time longer
and requires a large data space. In addition, it takes long time to
build the tree itself. For these reasons, a deep tree is not suited for
dynamic scene generation.

Our proposed method is based on the ’Ray Planes’ intersection
method [1]. Ray Planes including an origin are formed by each row
and column of rays in a packet, as shown in Fig. 1. The intersection
tests are done by using the bounding volumes involving primitives
and the planes involving rays. When a pair of two orthogonal planes
is found to intersect a bounding volume, intersection tests between
the primitives in the bounding volume and the ray included by the
two planes are performed. This method drastically decreases the
number of intersection tests. Let us assume that the size of ray
packets is N×N. Conventional methods require N×N = N2 inter-
section tests per bounding volume. The proposed method, on the
other hand, requires only N+N = 2N intersection tests. Thus, the
larger the sizes of ray packets are, the greater number of intersection
tests the proposed method can save.

Another advantage of the proposed method is that it no longer
requires a deep tree, because it requires fewer intersection tests.
Leaves in the tree can have more primitives than a conventional
method. As a result of decreasing the tree depth, the proposed
method makes the traverse faster and reduces the data space for

∗e-mail: {komatsu,yoshi,zaitsu,suzuki,nakamura}@archi.is.tohoku.ac.jp
†e-mail:ooba@jp.ibm.com

Figure 1: Ray Planes in a packet Figure 2: test scene (61828 tri.)

Table 1: Total execution time (sec.)

Packets Depth of Kd-tree
16 18 20 22 24 26

1x1 27.77 8.32 4.43 2.84 2.16 1.98
2x2 123.64 56.54 23.02 10.49 7.86 7.11
4x4 21.51 8.32 4.83 7.92 2.81 2.67
8x8 5.16 2.87 1.97 1.65 1.53 1.59
16x16 2.21 1.60 1.34 1.29 1.35 1.52
32x32 1.64 1.44 1.28 1.35 1.53 1.89
64x64 2.02 1.81 1.58 1.68 2.10 3.02

storing the tree structures.
We performed experiments on generating images of 1024×1024

pixels to evaluate our proposed method using a commodity PC with
3.4GHz Intel Pentium4 and 2GB memory. Fig. 2 is one of the test
scenes for the evaluation. We measured the total execution time
with varying the number of ray packets and the depth of the kd-tree.
The result is shown in Table 1. For this scene, the fastest operation
was achieved with a 32×32 packet size using a 20 deep kd-tree.
The reasons are that the number of primitives in a leaf of the 20
deep kd-tree is suitable for reducing the intersection tests using our
proposed method and the 32×32 packet size could efficiently utilize
the coherency of the tree.
In conclusion, our proposed packet-primitive intersection

method can reduce the depth of kd-tree and exploits the coherency
of rays. As future work, we need a more detailed implementation
with SSE and performance evaluations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: global illumination, ray tracing, ray packet, Kd-tree

REFERENCES

[1] Yoshiyuki Kaeriyama, Daichi Zaitsu, Kazuhiko Komatsu, Kenichi

Suzuki, Nobuyuki Ohba, and Tadao Nakamura. Hardware for a ray

tracing technique using plane-sphere intersections. In Eurographics

Symposium on Parallel Graphics and Visualization (Short), pages 9–

12, May 2006.

[2] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray

tracing algorithm. In ACM Transaction of Graphics (Proceedings of

ACM SIGGRAPH), volume 24, pages 1176–1185, 2005.

[3] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.

PhD thesis, Saarland University University, 2004.

6

Tessellating Planar Quadrilaterals into Triangles to Meet a Maximum-Edge-Length
Threshold while Minimizing Grid Size

Peter Djeu∗

University of Texas at Austin

Gordon Stoll
Intel Corporation

William R. Mark
University of Texas at Austin

The ability to tessellate surfaces to the right granularity allows
rendering systems to provide a variety of useful features, such as ef-
ficient rendering of curved surfaces, support for displacement map-
ping, and economical shading. We present an algorithm for quickly
finding the appropriate tessellation rate for a planar quadrilateral
which minimizes the number of triangles while ensuring that all
edges in the tessellation are shorter than a given edge length. The
algorithm makes use of the observation that determining the longest
edge in a tessellated quadrilateral can be done in constant time by
examining only a fixed number of critical edges along the border
and at the corners of the quad.

∗djeu@cs.utexas.edu

7

Interactive Iso-Surface Ray Tracing of Massive Volumetric Datasets

Heiko Friedrich∗

Saarland University

Ingo Wald†

University of Utah

Johannes Günther‡

MPI Informatik

Gerd Marmitt∗

Saarland University

Philipp Slusallek∗

Saarland University

Figure 1: Three images of the Lawrence-Livermore National Laboratory (LLNL) simulation of a Richtmyer-Meshkov instability at different LODs.
While data are loaded asynchronously in the background it is possible to fully interact with the scene. A kd-tree based LOD structure is used
to bridge-over loading times while allowing interactive ray tracing at several frame per second on a custom PC.

1 INTRODUCTION

The interactive visualization of iso-surfaces from volume data is
an important tool in many visualization applications. We propose
a kd-tree based data structure that allows to ray trace iso-surfaces
of large volumetric data sets in the giga-bytes range at interactive
frame rates on a single PC with short loading times and the possi-
bility to interact with the scene while not all data are present. To do
so, a LOD technique is used to bridge-over loading times of data
that are fetched asynchronously in the background.

2 METHOD OVERVIEW

In our approach we combine some previous existing techniques
with the goal to get a highly flexible and fast rendering system
that only requires commodity PC hardware to allow interactive iso-
surface ray tracing of large data sets with short loading times. We
first create a LOD hierarchy of the volume. This LOD data is solely
used for rendering while not all data from the lowest level is present.
Then for each LOD level we build an implicit min/max kd-tree and
merge them together such that we obtain a single kd-tree which
is valid for all LOD levels. This kd-tree and the LOD data are
then decomposed into treelets (see Figure 2) and saved together in
a page-based data structure. During rendering, a background thread

IDVoxel DataMin/Max Values Padding
(2N-1) * (sizeof(voxel)/2) 8w*b*h*sizeof(voxel)

w,b,h
24

Figure 2: The structure and memory requirements of a treelet.
Min/max values, voxel data, an ID, and the dimensions of the voxel
data are grouped together. If the size of a treelet is small enough
multiple treelet structures can be placed in one page on the hard disc.
Width w, breadth b, and height h include an outer ring of voxels in
order to calculate the central difference for shading.

loads in a breadth-first-search (bfs) order all relevant treelets from
the hard disc that are required for rendering the desired iso-surfaces.
Whenever a new LOD level is completely loaded, the render threads
are notified such that they can use a finer LOD for the next frame.

∗e-mail:{friedrich,marmitt,slusallek}@graphics.cs.uni-sb.de
†e-mail:wald@sci.utah.edu
‡e-mail:guenther@mpi-inf.mpg.de

3 RESULTS

In order to evaluate the efficiency of our out-of-core data structure
we measured performance numbers for two data sets: Time-step
270 of the LLNL Richtmyer-Meshkov instability simulation with a
voxel resolution of 20482×1920, and a synthetic data set Attractor
with 20483 voxel resolution (see Figure 3). The test system is a
dual-core Opteron 880 PC with 32 GB RAM. The overall render-

Figure 3: Example images of our test scenes: LLNL and Attractor
rendered with progressive soft-shadows and phong shading between
1.2 and 1.4 fps at 640×480 image resolution.

ing performance is between 1.8 and 3.5 fps for the finest level in
our hierarchy using two render threads and a simple diffuse shad-
ing. Furthermore, the required in-core memory is reasonable with
approximately between 2.1 GB (Attractor) and 6.1 GB (LLNL), es-
pecially if we consider that we use quantized min/max values in the
treelets.
In comparison to the approach of DeMarle et al. [1] we achieve

almost the same rendering performance using only a single PC
rather then a 32 PC cluster setup. This reduces the hardware re-
quirements significantly. Additionaly we achieve a loading time
which is up to a factor of three faster compared to Wald et al’s. [2]
and a rendering performance that is twice as fast.

REFERENCES

[1] David E. DeMarle, Steve Parker, Mark Hartner, Christiaan Gribble, and

Charles Hansen. Distributed Interactive Ray Tracing for Large Volume

Visualization. In Proceedings of the IEEE Symposium on Parallel and

Large-Data Visualization and Graphics (PVG), pages 87–94, 2003.

[2] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek, and

Hans-Peter Seidel. Faster Isosurface Ray Tracing using Implicit KD-

Trees. IEEE Transactions on Visualization and Computer Graphics,

11(5):562–573, 2005.

8

Fast ray tracing with Intel® IPP
Alexei Leonenko Sergey Perepelkin†

Intel Corporation

ABSTRACT

Recent advances in interactive global illumination are mainly based
on efficient spatial indexing with k-d trees and optimized tracing
of ray packets [3, 2]. As been essentially primitive and common
these two operations are suitable for low-level optimization and so
IPP team decided to extend functionality of Intel® IPP 1 library
and to develop Realistic Rendering domain with ray-tracing sup-
port functions. In this report we will provide a brief overview of
a planned API and will give some preliminary performance results
for the reference version of k-d tree construction primitive.

Keywords: kd-trees, ray tracing, low-level API, optimization

API DESCRIPTION

Currently there are four distinctive groups of functions in RR do-
main: shader and auxiliary support functions, core ray-scene in-
tersection functions and acceleration structures handling functions.
Auxiliary support functions include various functions for linear in-
terpolation of normals, texture coordinates or arbitrary vertex prop-
erties using barycentric coordinates, fast boundary box evaluation,
and explicit intersection coordinates evaluation. Shader support
functions are basically limited to various masked arithmetic opera-
tions on vectors of FP32, several functions for dot product evalua-
tion and ray casting primitives. In the core of RR domain lays three
optimized ray-triangles intersection primitives: ipprIntersectMO,
ipprIntersectEyeSO and ipprIntersectAnySO.

These primitives answer on typical visibility queries. For given
block of rays defined by origin coordinates O and directions D func-
tion ipprIntersectMO(O[3], D[3], Dist, UV[2], tId, Ctx, Sz) search
for nearest intersection with group of triangles defined by context
Ctx. Output Dist parameter specifies distance along each ray be-
tween origin and hit position, UV specify hit coordinates inside
triangle tId. For rays which do not intersect any scene geometry
corresponding tId is set to -1, serving as mask for consequent op-
erations. For primary rays function ipprIntersectEyeSO(o, D[3],
Dist, UV[2], tId, Ctx, Sz) which traces a block of rays from a single
origin o should be used instead of generic one. To answer on sim-
ple visibility queries, like tracing shadow rays, function ipprInter-
sectAnySO(o, D[3], Occl, Mask, Ctx, Sz) should be used. It traces
block of rays from a single origin o to specified directions look-
ing for any intersections with scene. For further operations logi-
cal result of this test is written to Mask parameter, whereas Occl
parameter is used to speedup the intersection. All three intersec-
tion functions operates on similar scene context, which includes
scene bounding box, internal acceleration structure and k-d tree.
Rebuild of internal acceleration structure with help of ipprTrian-

e-mail: alexei.leonenko@intel.com
†e-mail:sergey.perepelkin@intel.com

1Intel® Integrated Performance Primitives (Intel® IPP) is a trademark or
registered trademark of Intel Corporation or its subsidiaries in the United
States or other countries

model #tris time SAH NL ET EL EI

bunny 69k 1.7s 966 270k 55.5 16.2 6.6
armad. 345k 4.8s 866 504k 52.1 15.0 4.2
dragon 871k 12.5s 1356 1.43m 79.8 22.7 7.9
buddha 1.1m 16.2s 1490 1.83m 87.2 24.7 9.1
blade 1.7m 17.8s 1764 2.22m 105.3 29.7 9.2
thai 10m 256s 1354 22.3m 75.3 21.6 11.2
erw6 804 16ms 284 3.15k 13.2 4.24 4.3
conf. 282k 7.5s 851 1.04m 43.2 11.9 10.1

Table 1: Reference kd-tree construction performance.

gleAccelInit is rather simple procedure and can be performed for
moderate scenes in real-time.

While user may provide its own k-d trees, RR domain includes
special function for tree construction. It implements variant of sub-
optimal O nlog2n SAH construction algorithm with optional fine-
grain threading. Table 1 summarizes performance of the reference
(ANSI C, algorithmic optimizations only) builder implementation
on server with Intel® Xeon 3.6GHz processor. For detailed descrip-
tion of statistical measures refer to [4]. Note though what in Table 1
SAH 15 ET 20 EI . User may control tree building algorithm
explicitly specifying maximum tree depth or by implicitly changing
termination criterion with help of QoS parameter ranging from 0.0
(fastest) to 1.0 (deepest). Our experiments demonstrated that along
with early empty space cutoff heuristic [2] it is useful to prioritize
boundary singularities cutoff by 70%.

CONCLUSION AND OPEN QUESTIONS

We believe what it is possible to achieve interactive rendering rates
using Intel® IPP implementation of core real-time ray tracing oper-
ations. But we understand what usage model for current API is lim-
ited by plain scene representation, sparse shader support and lack
of dynamics. Unfortunately, absence of industry level standards in
the area of realtime ray tracing complicates low-level development
and many features available in in-house software remains relatively
inaccessible for general public. Several steps in this direction were
taken with recent OpenRT introduction [1]. Another important is-
sue is lack of universal benchmarks. It is really hard to compare
different approaches and choose the best one without uniform and
widely supported performance indicators.

Overcoming these issues along with further algorithmic im-
provements is a key to prosperous future of real-time ray tracing.

REFERENCES

[1] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek.
The OpenRT Application Programming Interface - Towards a Common
API for Interactive Ray Tracing. In Proceedings of the 2003 OpenSG
Symposium, 2003.

[2] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level
ray tracing algorithm. In Proceedings of the ACM SIGGRAPH, pages
1176–1185, 2005.

[3] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[4] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, 2006.

9

Realtime Ray Tracing of Animated Meshes using Fuzzy KD-Trees

Heiko Friedrich∗

Saarland University
Johannes Günther†

MPI Informatik
Ingo Wald‡

University of Utah
Hans-Peter Seidel†

MPI Informatik
Philipp Slusallek∗

Saarland University

Figure 1: Several dynamic example scenes ray traced between 4 (including shadows) and 14 frames per second (with a simple shader) on a
single CPU and 10242 resolution. The first two images show predefined animations while the last three images demonstrate interactively skinned
meshes.

1 INTRODUCTION

Kd-trees have been proven to be an efficient spatial index structure
to speed up the computation of the closest hit of a ray with a scene.
However, due to its costly preprocessing, ray tracing applications
using kd-trees have been quasi limited to static scenes. The only
exceptions are until today affine transformations which can be han-
dled by a two-level kd-tree [2].

2 FUZZY KD-TREES

Fuzzy kd-trees allow for ray tracing animated objects without the
necessity to rebuild the spatial index of animated objects. To do
so, fuzzy kd-trees are not directly built over the time dependent
scene primitives pi, e.g. triangles, but over their corresponding axis
aligned fuzzy boxes FB(pi). Fuzzy boxes bound the space where
pi can be located during the animation. Simply using this strategy
for a complete animated object would of course yield huge over-
lapping fuzzy boxes, and thus a disastrous ray tracing performance.
The key is to split the animated object into several sub-meshes of
coherent motion, find an affine transformation for each sub-mesh
approximating this coherent motion, subtract this transformation,
and finally bound the residual motion by fuzzy boxes. Because this
residual motion is usually much smaller the overlap of the fuzzy
boxesFB(pi) in the transformed space is minimized.
In the following sections we propose two methods to decompose

the deformed mesh into sub-meshes and to find the corresponding
affine transformations for each animation step.

2.1 Motion Clustering for Predefined Animations

In [1] we propose a novel clustering algorithm which identifies co-
herent motion in an animated mesh. The resulting sub-meshes ex-
hibit small residual motion and thus the fuzzy boxes of the clusters
are minimized. This clustering – based on a generalized Lloyd re-
laxation – is started with one cluster and we iteratively add new
clusters until the overall residual motion does not decrease sig-
nificantly anymore. A new cluster is seeded by the triangle with
the largest residual motion. During the relaxation of the current

∗e-mail: {friedrich,slusallek}@graphics.cs.uni-sb.de
†e-mail: {guenther,hpseidel}@mpi-inf.mpg.de
‡e-mail: wald@sci.utah.edu

clusters we alternately find optimal transformations for each cluster
and reassign the triangles to the cluster where their residual motion
is smallest. The needed affine transformations are determined by
solving a linear least squares problem that minimizes the L2-norm
of the residual motion using the positions of the vertices contained
in the respective cluster.

To be applicable, this method requires that all animation poses
are known in advance. However, only the positions of the vertices
are needed and no additional information such as modeling or pose
parameters are necessary.

2.2 Bone Model Evaluation for Skinned Meshes

An extension to this approach is based on leveraging additional in-
formation of the animated mesh. For skinned meshes we use the
present skeleton to avoid the costly clustering. Vertices are simply
assigned to the bone with the largest influence resulting in coher-
ently moving clusters. Additionally, we can get the affine transfor-
mations directly from the current pose of the bones. In order to
bound the residual motion for the fuzzy boxes we sample the space
of all possible poses.

This extensions not only allow us to significantly accelerate and
simplify the clustering process, but also to interactively animate the
skinned mesh. This means that it is possible to interpolate and blend
different animation cycles.

3 RESULTS AND CONCLUSIONS

With our implementation we achieve rendering frame rates up to
14 frames per second on a single 2.4 GHz Opteron processor. As
measurements show, the performance penalty for realistic datasets
of our fuzzy kd-tree compared to optimized static kd-trees (for ev-
ery frame) is with a factor of two to three reasonable low. However,
avoiding the high per-frame rebuild costs of static kd-trees we are
able to ray trace dynamic scenes interactively.

REFERENCES

[1] Johannes Günther, Heiko Friedrich, Ingo Wald, and Philipp Slusallek.

Ray Tracing Animated Scenes using Motion Decomposition. In Pro-

ceedings of Eurographics, 2006.

[2] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.

PhD thesis, Computer Graphics Group, Saarland University, 2004.

10

Towards Triple Product Sampling in Direct Lighting

David Cline
Brigham Young University

Parris K. Egbert
Brigham Young University

Kenric B. White

1 INTRODUCTION

State of the art sampling methods for direct lighting generate sam-
ples according to the product of the incident light and BRDF
[1, 2, 3]. None of these methods includes a visibility term as part
of their sampling distributions, however. This work presents sev-
eral techniques that extend existing product samplers to include an
approximate shadow term as either a pre- or post-processing step.

2 ADDING A VISIBILITY TERM TO PRODUCT SAMPLING

2.1 Visiblity in Preimage Space

Most product sampling algorithms for direct lighting begin with a
set of uniformly-distributed points in [0,1)2 which are transformed
to the product distribution. Ray samples are then created from the
transformed points, and light source visibility is tested for these
rays. Conceptually, however, we can replace the shadow rays with
visibility maps defined over [0,1)2. We call this kind of a visibility
map a preimage visibility map because it is defined over the domain
of input numbers rather than the range of output directions. The
benefit of defining visibility maps in this way is that occluded points
can be culled before they go through an expensive transformation.

In practice, it is not feasible to produce an accurate visibility
map for each primary ray in a ray tracer, but it is possible to create
approximate visibility maps at a sparse grid of locations over the
image plane. We keep the size of the visibility maps on the order of
the pixel spacing between them so that the total cost of creating the
maps is only a few rays per pixel.

Our preimage space triple product sampler proceeds as follows:
First, we generate a number of uniform points in [0,1)2. Next, we
discard points that are occluded in all nearby visibility maps. The
remaining points are then transformed to the product distribution
(BRDF × incident light). Visibility is assumed for samples not
occluded in any nearby visibility map, and shadow rays are cast to
determine visibility for uncertain samples.

2.2 Visibility in World Space

A second variant of our algorithm relies on visibility maps defined
in world space instead of preimage space. The second algorithm
works as a post-process to product sampling rather than a prepro-
cess. The algorithm proceeds as follows: first, uniform points are
sent through a product sampler as usual. The resulting samples are
then checked against nearby world space visibility maps in the map
grid. Once again, samples in the occluded regions of the maps are
discarded, samples within visible regions are assumed to be visible,
and samples within uncertain regions must cast shadow rays to de-
termine visibility. Figure 1 shows an the preimage and world space
visibility maps created for an example scene.

2.3 Unbiased Rendering

Since the visibility maps are never completely accurate, the triple
product samplers just described are biased. We can make them un-
biased by treating the visibility maps as a visibility guide rather
than absolute truth. Instead of eliminating all samples in regions
deemed to be occluded, we only cull some of them (by Russian
roulette), and reallocate the culled samples to regions thought to be

(a) (b) (c)

Figure 1: (a) An example scene with (b) the preimage visibility maps
and (c) the world space visibility maps generated for it.

visible, increasing the sample density there. Final visibility must be
calculated for all samples.

3 EXAMPLE

Figure 2 compares a standard product sampling algorithm to a bi-
ased and unbiased version of our preimage space triple product
samplers. The scene consists of a bunny enclosed in box with a
small hole in the top to let light through. Most of the light from the
environment map light source (grace cathedral) is blocked, so that
the product distribution does not form a good importance function
for the scene. By providing an approximate shadow term, our triple
product samplers produce much smoother results in the penumbra
regions of the image.

(a) (b) (c)

Figure 2: “Bunny in a box” scene tone mapped to bring out details
in dark regions of the image. (a) Two stage importance sampling,
(b) biased triple product sampling and (c) unbiased triple product
sampling.

REFERENCES

[1] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Hen-
rik Wann Jensen. Wavelet importance sampling: efficiently evaluating
products of complex functions. ACM Trans. Graph., 24(3):1166–1175,
2005.

[2] David Cline, Parris K. Egbert, Justin F. Talbot, and David L. Cardon.
Two stage importance sampling for direct lighting. In T. Akienne-
Möller and W. Heidrich, editors, Rendering Techniques 2006 Eu-
rographics Symposium on Rendering, pages 103–113, Aire-la-Ville,
Switzerland, 2006. Eurographics Association.

[3] Justin F. Talbot, David Cline, and Parris K. Egbert. Importance resam-
pling for global illumination. In Kavita Bala and Philip Dutré, editors,
Rendering Techniques 2005 Eurographics Symposium on Rendering,
pages 139–146, Aire-la-Ville, Switzerland, 2005. Eurographics Asso-
ciation.

11

Evaluating Multidimensional Samples Using 2-D Projections

Dave Edwards Solomon Boulos Peter Shirley Ingo Wald

School of Computing, University of Utah
{edwards|boulos|shirley|wald}@cs.utah.edu

In theory, Monte Carlo rendering is an infinite-dimensional inte-
gration problem; in practice, the rendering equation is evaluated
over a finite-dimensional space. In order to efficiently produce
high-quality rendered images, certain dimensions must be sampled
more carefully than others. In this paper, we present an algorithm
for ordering the dimensions of a multi-dimensional sample set by
applying quality metrics to two-dimensional projections of the sam-
ple points. Our method orders the dimensions from highest to low-
est quality; as a result, important dimensions in the rendering inte-
gral can be sampled using the earlier dimensions in the ordering to
efficiently produce high quality renderings.

12

Improved Adaptive Frameless Rendering Using Edge Respecting Filters

Ewen Cheslack-Postava∗

University of Virginia

Abhinav Dayal†

Northwestern University

Abe Stephens‡

University of Utah

David Luebke§

NVIDIA Corporation

Ben Watson¶

North Carolina State University

ABSTRACT

Multiple techniques have been proposed to exploit temporal coher-
ence of samples for real time ray tracing [4, 5]. These techniques
store samples, reproject them for the current frame, and guide sam-
pling based on the sparsity and age of samples. A common prob-
lem with these techniques is that, as the sampling rate is reduced
edges become more difficult to resolve and become blurred or, even
worse, misshapen.

Bala et al. [1] propose a solution to this problem by explicitly
calculating where edges occur in each frame and construct an edge
and point image. Samples are only used in the reconstruction of a
pixel if they can be reached without crossing an edge. This edge
respecting reconstruction makes a striking visual difference and al-
lows for sparse sampling which is necessary if we wish to include
expensive shading effects such as global illumination.

We propose an extension and modification of edge and point im-
ages and combine that technique with Adaptive Frameless Render-
ing (AFR) [4] to achieve high quality, ray traced, animations at very
low sampling rates. At the core of our technique is a new primitive,
the space time plane, which represents edges in the image-time vol-
ume.

First we shortly review the AFR method. Because AFR is frame-
less samples are taken continuously, without regard for frames.
AFR is adaptive in sampling by focusing samples in regions of high
spatial or temporal variation. It is also adaptive in reconstruction by
varying the reconstruction filter size based both on the sample den-
sity in the region and the variation detected in each dimension. We
find this technique to be successful in many cases, but it has dif-
ficulty, even with the adaptive sampling, resolving edges well at
low sampling densities. Our new technique specifically targets this
issue.

Next we see how edge point images extend to animations. Con-
sider the concept of a video cube [3]. A video cube is simply all
the data contained in an animation set up in the expected form -
two image dimensions and one time dimension. To generate frames
of the animation slices are taken from this volume. If we consider
the edges used in edge and point images in the context of the video
cube it is simple to see that edges carve out surfaces in the volume.
These surfaces can open and close, for example due to occlusions
events, intersect, merge and split.

We note an important feature of the surfaces formed by edges:
they are always closed surfaces (possibly using the edges of the
video cube). Because of this feature the surfaces form a segmenta-
tion of the video cube. We can use these surfaces to maintain this
segmentation. This segmentation can then in turn be used to tag

∗e-mail: elc5d@cs.virginia.edu
†e-mail: abhinav@cs.northwestern.edu
‡e-mail: abe@sci.utah.edu
§e-mail: dave@luebke.us
¶e-mail: bwatson@ncsu.edu

both samples and pixels with a single region. Using these tags we
can efficiently discard samples which should not be used in recon-
structing a pixel (i.e. only samples with tags matching the tag of the
pixel we are reconstructing will contribute).

Our system uses the ray tracer to detect these surfaces instead of
calculating them explicitly as in [1]. Currently we detect these sur-
faces by clamping a fraction of samples to an edge of the triangle
they hit and sample on either side. If the samples differ significantly
in color then a short time later the new location of the edge is com-
bined with the old position to generate a space time plane. This
space time plane represents a tangent to the surface and is reported
in the sample stream.

With a set of space time planes in hand we use a level set based
segmentation scheme to generate the regions. This segmentation
scheme is closely related to [2], but our cost function is based on
our space time planes instead of on image colors. Tagging sam-
ples and pixels using this segmentation is trivial, as is adding tag
checking to the reconstruction step.

Note that the cost has not increased significantly over traditional
AFR. Sampling remains largely the same, some samples are simply
shifted to be space time planes instead of normal samples. Also,
edge detection is not dependent on the amount of geometry in the
scene, as it is for Bala et al. [1]. The most expensive step we have
added is the segmentation. However, level set techniques are highly
parallelizable and could be performed on the GPU, so this is not a
significant weakness. The cost of the final reconstruction has re-
mained the same since the only addition there is the tag check.

Our initial results are very promising. We see a significant reduc-
tion in RMS error compared to traditional AFR. We are focusing
on improving both space time plane sampling and the segmentation
technique. Space time plane sampling currently only finds edges
formed by silhouette edges. We are considering techniques both to
detect arbitrary edges in images as well as specific types of edges,
such as shadows and edges in textures. Finally, we are also inves-
tigating ways to reproject space time planes and hope doing so will
allow for fewer space time plane samples and will improve recon-
struction.

REFERENCES

[1] Kavita Bala, Bruce Walter, and Donald P. Greenberg. Combining edges
and points for interactive high-quality rendering. ACM Trans. Graph.,
22(3):631–640, 2003.

[2] T. Brox and J. Weickert. Level set based image segmentation with mul-
tiple regions. pages 415–423, 2004.

[3] Michael F. Cohen, Alex Colburn, Adam Finkelstein, Allison W. Klein,
and Peter-Pike J. Sloan. Video cubism. Technical report, Microsoft
Research, 2001.

[4] Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David Luebke.
Adaptive frameless rendering. Eurographics Symposium on Rendering,
pages 265–275, 2005.

[5] Bruce Walter, George Drettakis, and Steven Parker. Interactive render-
ing using the render cache. In D. Lischinski and G.W. Larson, editors,
Rendering techniques ’99 (Proceedings of the 10th Eurographics Work-
shop on Rendering), volume 10, pages 235–246, New York, NY, Jun
1999. Springer-Verlag/Wien.

13

BRL-CAD: Ray Tracing for Scientific and Engineering Applications

Lee A. Butler

US Army Research Laboratory

The BRL-CAD package boasts one of the first distributed, par-
allel and vectorized ray tracers. The package has been in active
development since 1985 and has been ported to most POSIX-like
systems in existence in the last 20 years. In December, 2004, it be-
came an open source project. Today the system is a hybrid CSG and
BREP modeling environment, supporting a wide variety of implicit
and explicit geometric representations. Its geometry engine and ray
tracing capabilities are used by numerous software packages in the
global defense community to support engineering analysis and sim-
ulations.

Typical BRL-CAD models are vehicles with geometric detail
down to the individual wire, nut and bolt. This level of detail can
also be extended to the surrounding environment. Individual blades
of grass, leaves on trees, road surfaces and buildings in vast tracts
of terrain have been modeled.

Unlike many optical rendering systems which typically stop and
shade at the first ray/object intersection, most BRL-CAD based ap-
plications pass rays through the entire depth of the scene. These
applications trace rays for a variety of purposes including: multi-
spectral and optical rendering, ballistic analysis, nuclear transport,
presented/exposed area computation, mass/weight/volume calcula-
tion, and interference/overlap detection.

In the last five years, the package has been adopting recently
developed algorithmic enhancements in ray tracing including cache
coherency, packet tracing and performance oriented space partition-
ing. This has delivered substantial improvement in key analysis ap-
plications.

14

Expressing Blast Sensitivity Envelopes with Implicit Surfaces

Erik Greenwald

US Army Research Laboratory

Scientists and engineers in the field of blast mechanics express
sensitivity envelopes of objects in terms of a center of damage and a
Lethal miss distance. Currently engineers produce 2D drawings and
extrapolate an approximation of the shape back into 3D for analy-
sis purposes. Isosurfaces are blended together (usually by hand).
Interest has been expressed by the DoD community in providing a
mechanism and tools to describe, visualize, and interrogate these
envelopes via software.

The concept of center of damage and lethal miss distance seems
to map directly to the isosurfaces produced by blobs or metaballs.
This would allow the scientist/engineer a familiar notation for ex-
pressing blast envelopes. It also allows simulations to directly query
the envelope as specified.

The US Army Research Laboratory is implementing metaball
capability in the BRL- CAD open source modeling package to sup-
port the blast modeling community.

15

A Coherent Grid Traversal Approach to Visualizing Particle-Based Simulation Data

Christiaan P. Gribble Thiago Ize Andrew Kensler Ingo Wald Steven G. Parker

Scientific Computing and Imaging Institute, University of Utah
{cgribble|thiago|aek|wald|sparker}@cs.utah.edu

Figure 1: Visualizing particle-based simulation data with efficient ray tracing. We describe several optimizations that tailor the coherent grid traversal algorithm for
efficient and effective visualization of particle-based simulation data. Our approach renders images of datasets with millions of particles at highly interactive rates
and also provides run time control of several advanced visualization features, including color mapping, illumination effects from soft shadows, and parameter
range culling. The interactive performance of our approach compares favorably with other particle visualization systems.

1 INTRODUCTION

We describe an efficient algorithm for visualizing particle-based
simulation data using fast packet-based ray tracing and multi-level
grids. In particular, we introduce optimizations that exploit the
properties of these datasets to tailor the coherent grid traversal
(CGT) algorithm [5] for particle visualization, achieving both im-
proved performance and reduced storage requirements.

2 COHERENT GRID TRAVERSAL FOR PARTICLE DATASETS

Several observations about glyph-based particle visualization per-
mit optimizations over and above those employed by the original
CGT algorithm. First, a sphere S with center C and radius r is sym-
metric, so determining whether S overlaps a frustum F is analogous
to testing whether C is in the r-neighborhood of F . In particular, we
can test whether the distance from C to any of the bounding planes
of F is less than r. Second, testing whether the distance from C to
the planes of F is less than r is the same as testing whether C is
inside another frustum Fr that has been enlarged by r. By travers-
ing the grid using the enlarged frustum, only those spheres whose
centers lie inside that frustum must be tested for intersection, and
therefore each sphere must be stored only in the cell in which its
center is located. We call this approach the sphere-center method.

To facilitate a more efficient traversal, we leverage the macrocell
hierarchy described by Parker et al. [2]. Each level in this hierarchy
imposes a coarser grid over the previous level, and each macrocell
corresponds to an M×M×M block of cells in the underlying level.
We currently use a simple two-level hierarchy: one level of macro-
cells imposed on top of the actual grid.

SIMD shaft culling, which is used in the original CGT algorithm,
relies on primitives that posses planar edges, a property which
spheres do not exhibit; hence, this fast culling technique is not ap-
propriate for our application. However, if the distance from the
center of a given sphere to any of the planes of the bounding frus-
tum is greater than the radius of the sphere, the rays bounded by the
frustum cannot intersect the sphere. We use this test to quickly cull
non-intersecting spheres.

In addition to its position and radius, up to four values repre-
senting properties from the simulation can be stored with each par-
ticle. To gain additional insight into the behavior of a simulation,
investigators often isolate particles with parameters that take on a
particular value or that lie within some range of values. We cull
particles whose range of values do not overlap the currently valid
range, thereby avoiding unnecessary intersection tests. To support
this interaction, macrocells must store the minimum and maximum
values of each data variable across all of the particles they contain.

Dataset Our CGT RTRT GPU-based
Bigler et al. [1] Gribble et al. [3]

Cylinder 100.20 12.60 5.78
JP8 99.88 6.90 17.40
Bullet 126.93 11.90 2.56
Thunder 40.86 14.90 8.10
Foam 14.33 6.40 2.04
BulletTorso 18.31 13.50 1.56

Table 1: Comparison of particle visualization methods. Frame rates achieved
using our modified CGT algorithm and two state-of-the-art interactive particle
visualization systems.

Soft shadows from area light sources provide important visual
cues about the relative position of objects in complex datasets.
Packets of coherent shadow rays are generated by connecting the
hit point corresponding to a given primary ray with some number
of samples on an area light source [4]. Secondary ray packets then
traverse the grid using the modified CGT algorithm in a manner
identical to that used for primary ray packets.

3 RESULTS

We compare the performance of our approach with two recent sys-
tems that, to our knowledge, represent the current state-of-the-art in
interactive particle visualization. The first is based on an optimized
single ray grid traversal algorithm [1], while the second leverages
programmable graphics hardware and software-based acceleration
techniques [3]. The results in Table 1 show that our modified CGT
algorithm compares favorably with these systems.
REFERENCES

[1] J. Bigler, J. Guilkey, C. Gribble, S. Parker, and C. Hansen. A Case
Study: Visualizing Material Point Method Data. In Eurographics/IEEE
Symposium on Visualization, pages 299–306, May 2006.

[2] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive Ray Tracing for Volume Visualization. IEEE Transactions
on Visualization and Computer Graphics, 5(3):238–250, 1999.

[3] C. P. Gribble A. J. Stephens, , J. E. Guilkey, and S. G. Parker. Visual-
izing Material Point Method Datasets on the Desktop. In British HCI
2006 Workshop on Combining Visualization and Interaction to Facili-
tate Scientific Exploration and Discovery, pages 1–8, September 2006.

[4] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive Rendering
with Coherent Ray Tracing. Computer Graphics Forum, 20(3):153–
164, September 2001.

[5] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing
Animated Scenes using Coherent Grid Traversal. ACM Transactions on
Graphics, 25(3):485–493, July 2006. (Proceedings of Siggraph ’06).

16

